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a b s t r a c t

Accurate sintering condition recognition (SCR) is an important precondition for optimal control of
rotary kilns. However, the occurrence probability of abnormal conditions in the industrial field is
much lower than normal, resulting in imbalanced class sintering samples in general. This significantly
deteriorates the effectiveness of existing recognition models in abnormal condition detection. In
this paper, an integrated framework considering class imbalance is proposed for sintering condition
recognition. In the proposed framework, after analysing the characteristics of thermal signals by
the Lipschitz method, four discriminant features are extracted to comprehensively describe different
sintering conditions. In addition, focusing on the class imbalance of sintering samples, the kernel
modification method is introduced to enhance the optimal marginal distribution machine (ODM), and
a novel recognition model kernel modified the ODM (KMODM) is proposed for SCR. By constructing
a new conformal transformation function to modify the ODM kernel function, KMODM optimizes
the spatial distribution of training samples in the kernel space, thereby alleviating the detection
accuracy deterioration of the minority class. The experimental results on real thermal signals and
standard datasets show that the KMODM model can effectively handle imbalanced data. Based on
this, the proposed SCR framework can reduce the misjudgement of abnormal conditions and balance
the recognition accuracy of each condition.

© 2020 Published by Elsevier Ltd on behalf of ISA.

1. Introduction

The sintering condition of the rotary kiln directly influences
the clinker quality. Taking the alumina rotary kiln as an example,
there are three main sintering conditions in kilns: normal, super-
chilled and super-heated. Super-chilled and super-heated con-
ditions are abnormal conditions. Under super-chilled conditions,
the raw materials calcined insufficiently, resulting in incomplete
melting of alumina in the subsequent refining processes. Under
super-heated conditions, the clinker is over-calcined and easy
to agglomerate, which damage the refractory materials and in-
crease the failure rate of the rotary kiln. Accurate estimation and
recognition of the sintering conditions are very important for safe
operation and efficient production. It is also the premise for the
control system to take appropriate measures to maintain normal
production.
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Sintering conditions recognition (SCR) is not an easy task at all
times. Temperature measured by physical measuring equipment
is an important index for SCR. However, it is not enough to
estimate the sintering conditions only by temperature. For exam-
ple, under normal sintering conditions, the sintering temperature
(ST) of an alumina rotary kiln may vary from 1000 to 1300 ◦

C according to many complex factors, such as material compo-
sition or coal feeding value. In addition, because of the large
delay characteristic of the rotary kiln, the change in temperature
generally lags behind the change in sintering condition, and ST
cannot reflect the current sintering condition in time.

Because the sintering process involves complex physical and
chemical reactions, the mechanism model of a rotary kiln is
difficult to construct. In fact, in most coal-fired industrial fields,
the sintering condition is determined by operators based on ex-
perience through the variation in process data. In recent years,
research on the automatic recognition of sintering conditions or
related parameters using process data has increased. The process
data for sintering condition recognition of a rotary kiln include
flame images and thermal signals. Flame image-based methods
play important roles in SCR owing to their intuition and prompt-
ness. Researchers have extracted various vision features [1–3]
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and developed classifiers [4] based on flame images. However,
in pulverized coal fields, smoke and dust disturbances may re-
sult in image degradation, which seriously affects the accuracy
of the algorithm. Additionally, many researchers have analysed
the characteristics of thermal signals and used soft computing
techniques for SCR. In [5], a locally linear neuro-fuzzy (LLNF)
model was used to establish a power prediction model of the
drive motor based on thermal signals and identified the sinter-
ing conditions according to the difference between the actual
motor power and the predicted value. Similarly, the LLNF-based
model was also used to detect the abnormal conditions of rotary
kilns in [6]. Other models, such as the hierarchical wavelet TS-
type fuzzy inference system (HWFIS) [7] and adaptive threshold
monitoring scheme [8], also achieved good performance in rec-
ognizing sintering conditions using thermal signals. In [9], the
chaotic characteristics of thermal signals were discovered. Based
on this, excellent results have been achieved in the prediction
of parameters closely related to sintering conditions, such as
sintering temperature [10] and coal feeding [11], using thermal
signals.

The abovementioned data-driven methods have made great
achievements in sintering condition recognition. However, the
collected process data are generally class imbalanced because the
occurrence probability of abnormal conditions is far less than
that of normal conditions, which is generally ignored by existing
methods. In the case of class imbalance, the learned separator
of the recognition model always skews towards the minority
class. As a result, the generalization performance of the recog-
nition model and recognition accuracy of abnormal conditions
deteriorates. In the field of the rotary kiln, the misjudgement of
abnormal conditions may cause a series of misoperations and
cause serious consequences. For instance, if the super-heated
condition is misjudged as super-chilled, the control system may
carry out a series of operations corresponding to super-chilled
conditions such as increasing coal feeding, which will cause a con-
tinuous rise of ST, thus reducing the clinker quality and damaging
the equipment. This problem of class imbalanced data in rotary
kilns usually challenges the designation of sintering condition
recognition models.

At present, numerous studies have focused on the improve-
ment of imbalanced classification strategies. The mainstream
methods include: data preprocessing, algorithm improvement,
and kernel methods. The data preprocessing methods usually
refer to resampling the training data using different techniques,
for example, generating minority samples in kernel space [12] or
using generative adversarial networks (GAN) networks [13], elim-
inating majority samples from the overlapping region [14]. How-
ever, if the spatial distribution of the training data is not revealed,
the resampling process may lead to the introduction of noise
(oversampling) or elimination of useful information (undersam-
pling). The algorithm improvements mainly refer to cost-sensitive
methods. It improves the detection rate of the minority class by
assigning larger penalty factors to the minority samples [15,16] or
the samples are difficult to recognize [17]. Cost-sensitive methods
have achieved excellent performance in the improvements of
single-model classification algorithms, such as the large mar-
gin distribution machine (LDM) [18] and fuzzy-rough nearest
neighbour (FRNN) [19]. Additionally, introducing cost-sensitive
strategies into the ensemble framework has also made many
achievements, and the most common ensemble frameworks in-
clude boosting [20–22], tree augmented naive Bayes (TANB) [23]
and error-correcting output codes (ECOC) [24]. The cost-sensitive
technologies are usually adjusting the influence weight of the
training data for the minimization misclassification costs. In fact,
the effect of this method is limited since the influence weight

is used only as the upper bound of Lagrange multiplier α ac-
cording to the Karush–Kuhn–Tucker (KKT) conditions. The ad-
justment of the influence weight does not necessarily change α.
Different from data preprocessing and algorithm improvement
methods, the kernel methods attempt to handle imbalanced data
by modifying the kernel function of the classifier using conformal
transformation [25]. In this way, the distribution of training data
can be changed, and the spatial resolution of the class boundary
can be enlarged in kernel space to better distinguish different
classes. The core of this method lies in the design of a conformal
transformation function, which is usually constructed according
to the initial margin [26,27] or distribution of boundary sam-
ples [28]. However, most of the existing conformal functions do
not consider the imbalance rate of training data, and simply rely-
ing on increasing the spatial resolution of overlapping regions has
limited performance improvement for the classifier in processing
imbalanced data.

In this paper, focusing on the class imbalance problem of
thermal signals in the SCR task, some effective features of thermal
signals are extracted, and a kernel modified optimal margin dis-
tribution machine (KMODM) is developed. The features extracted
from thermal signals can describe the mechanism of sintering
conditions comprehensively, which is conducive to the achieve-
ment of accurate recognition of sintering conditions. The optimal
margin distribution machine (ODM) is a newly proposed classi-
fier that was originally designed for balanced classification tasks
with better generalization performance and strong classification
ability [29,30]. By constructing a reasonable conformal function
to modify its kernel function, the ability of ODM to deal with
imbalanced classification tasks can be effectively improved. This
is the first time that the class imbalance issue has been con-
sidered in SCR tasks of rotary kilns. It is worth noting that this
paper does not simply combine the existing kernel modification
methods with ODM but develops an SCR framework according
to the characteristics of sintering condition samples. The main
contributions of this paper are summarized as follows.

(a) A novel data-driven sintering condition recognition frame-
work for rotary kilns is proposed in this paper. By extract-
ing several discriminate features of thermal signals and
modifying the kernel matrix of ODM, the misclassification
of abnormal conditions caused by class imbalance is signif-
icantly reduced, and the accurate and robust recognition of
sintering conditions is achieved.

(b) According to expert experience and the results of ther-
mal signal analysis, four statistical and dynamic features
are introduced to distinguish different sintering conditions.
These features have high separability and can compre-
hensively describe the characteristics of different sintering
conditions, thereby improving the recognition accuracy of
sintering conditions.

(c) For the class imbalance issue of the SCR task, a new con-
formal transformation function is constructed for kernel
modification of ODM. The proposed conformal function
can optimize the distribution of the minority samples in
kernel space and alleviate the influence of imbalanced data.
The experimental results show that the proposed KMODM
model can reduce the misjudgement of abnormal condi-
tions and is superior to other baseline models.

The remainder of this paper is organized as follows. The anal-
ysis of thermal variables and feature extraction are presented
in Section 2. In Section 3, after a brief introduction of the ODM
and kernel modification technique, a new conformal function is
designed, and an improved classification model KMODM is pro-
posed in this section. In Section 4, the SCR framework is proposed
completely, the experimental results are recorded and discussed
in detail. Finally, the conclusions and prospects are presented in
Section 5.
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Fig. 1. Thermal signals of the rotary kiln.

Table 1
The thermal variables of the rotary kiln.
Variables Description Unit

CFV The Coal Feed Rate t/h
RMF The Material Feed Rate t/h
PA The Volume of Primary Air m3/h
NP Negative Pressure of Kiln Tail Pa
KHT Kiln Head Temperature oC
KTT Kiln Tail Temperature oC
MDC Current of Main Motor A
ST Temperature of Sintering Zone oC

2. Thermal signals analysis and feature extraction

2.1. Thermal signals analysis

In rotary kilns, there are eight main thermal signals, including
the coal feeding value (CFV), raw meal flow (RMF), primary air
(PA), negative pressure (NP), kiln head temperature (KHT), kiln
tail temperature (KTT), main driver current (MDC) and ST. A
detailed description of these thermal signals is given in Table 1.
In Fig. 1, a part of these thermal signals is shown with a length
of 100,000 at a 30-s sampling interval.

The noise introduced by sensors is unconducive to the analysis
of thermal signals. Therefore, the mean filter is used to smooth
the thermal signals in this paper. The definition of the mean filter
is as follows:

X(t) =
1
w

∑
x(t)∈S

x(t), (1)

where S is a sliding window of width w, which is fixed to w = 10
in this paper, x(t) is the thermal signal, and X(t) denotes the result
after the mean filtering.

Table 2
The analysis results and RPs of thermal signals.
Variables FRI LRI RPs (0.5 min)

Start time End time

CFV 10 44 T-44 T-10
RMF 20 65 T-65 T-20
PA 4 52 T-52 T-4
NP 0 58 T-58 T
KHT 0 55 T-55 T-0
KTT 20 50 T-50 T-20
MDC 10 50 T-50 T-10
ST 4 82 T-82 T-4

2.2. Relevant period analysis of thermal signals

When the rotary kiln is treated as a control system, the ST,
which is measured by a colorimetric pyrometer, can be treated
as the kiln output, while other thermal signals are input to the
system. In our experience, the variation in the kiln input and
output has delay characteristics. Generally, it takes a while for
the variation in input signals to change the output of the system.
For example, after spraying the coal powder into the kiln, it may
take a few minutes to affect the ST, and the effect on the sintering
condition may take longer. To estimate the variation-relevant
time period of the input variable, a model-free approach named
the Lipschitz method is adopted. It was initially proposed to de-
termine the order of nonlinear systems [31], and its improvement
can be used to estimate the input delay of a complex nonlinear
system [32]. The estimation result of the Lipschitz method can
reveal the first relevant input (FRI) and last relevant input (LRI);
thus, the time period between the first and last output-related
inputs can be defined as the relevant period (RP).

To obtain the RP of each input signal, several models with a
single thermal signal as the input and the ST as the output are
constructed in this paper. The analysis results obtained by the
Lipschitz method are shown in Fig. 2 and Table 2. In Fig. 2, the
LRI and FRI of each thermal signal can be obtained and used to
define RP. Using the thermal signals in the RP to extract sintering
condition features, the information redundancy can be reduced
effectively. The RP of each thermal signal at current time T is
shown in Table 2.

Fig. 3 shows the thermal variables in the RP of a super-chilled
sample. In this situation, the values of CFV and PA are relatively
small, resulting in a lower ST. Meanwhile, as the NP increases,
the flame position moves towards the kiln tail, and thus, the
KHT decreases while the KTT increases. It can also be seen from
the MDC results that under super-chilled conditions, the material
has good fluidity due to insufficient sintering; thus, the power
consumption of the motor is low while the MDC is reduced.

In contrast to super-chilled materials, under super-heated con-
ditions, as shown in Fig. 4, the material becomes sticky and sticks
more easily to the kiln wall. This generally leads to high power
consumption of motors and an increase in the MDC. The kiln
operator generally reduces the CFV while increasing the RMF to
stabilize the sintering condition.

Compared with two abnormal conditions, the rotary kiln usu-
ally works in a relatively stable state under normal conditions,
and the change in the thermal signal is relatively small. As shown
in Figs. 3–5, the normal and abnormal conditions can be distin-
guished by signal stability in the RP.

According to the analysis of different conditions, the statistical
features and dynamic features of the thermal signals in the RP
are important for recognizing sintering conditions in the kiln.
Therefore, in this paper, these two types of features are extracted
to describe the sintering conditions of a rotary kiln.
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Fig. 2. The analysis results for RP estimation.

Fig. 3. The thermal signals in the RP of a super-chilled sample.

Fig. 4. Thermal signals in the RP of a super-heated sample.

2.3. Feature extraction

2.3.1. Statistical features
According to previous studies [1], the statistical features, in-

cluding the mean values and trend features, of thermal signals
are extracted as the basis for SCR in this paper.

Mean Value
The mean value of each thermal signal in the RP is closely

related to sintering conditions. For example, under super-heated

Fig. 5. Thermal signals in the RP of a normal sample.

conditions, the means of MDC and KHT are generally higher. The
following Eq. (2) can be used to extract the mean value of each
thermal signal in the RP:

MD =
1
LDR

∑
i∈DR

XD(i), (2)

where MD represents the mean feature of the thermal signal, XD is
the thermal signal D after denoising, D ∈ {CFV, RMF, PA, NP, KHT,
KTT, MDC, ST}; DR is the RP of signal D, and LDR is the length of
the DR.

Trend Feature
The trend of thermal signals is an unignorable feature for sin-

tering condition recognition. It can be defined as slopes derived
from the linear fitting of thermal data. The model of linear fitting
is as follows:

f (x; a, b) = ax + b, (3)

where a and b are the slope and intercept of the fitting line,
respectively. The error between the fitted line f(x) and the ther-
mal signal y can be minimized by minimizing the average fitting
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loss:

arg
a

min
b

1
LDR

LDR∑
i=1

(XDR(i) − (ax(i) + b))2, (4)

where XDR(i) is the ith data of thermal signal D in the RP, and
the optimum value of the slope a is the trend feature. The trend
feature of thermal signal D is denoted as AD in this paper.

2.3.2. Dynamic features
Some previous researchers have revealed that the statistical

features usually have poor separability. The analysis results in
Section 2.2 show that the thermal signal stability is different
under different sintering conditions, which is consistent with
the situation at the industrial site. Therefore, by introducing dy-
namic features, the sintering conditions can be described more
comprehensively and distinguished more accurately.

Short-time Energy
Short-term energy can be used to distinguish the signal sta-

bility in a short time, and it is widely adopted in speech signal
processing and recognition [33]. For a series signal XD(i)|ti=1, it can
be defined as:

En(t) =

t∑
i=t−(N−1)

[x(i)w(t − i)]2, (5)

where w(t − i) is a window function and N is the width of
the window. According to operating experience, the stability of
thermal signals under different conditions is quite different, the
short-term energy of the thermal signal in the RP is an effective
feature for SCR. When a rectangular window is defined as:

W (n) =

{
1, n ∈ DR
0, else, (6)

the short-time energy of thermal signals in the RP can be com-
puted as:

ED =

∑
i∈DR

(XD(i))2. (7)

Sample Entropy Feature
Sample entropy is often used to analyse the complexity of

signals or extract related features in fault diagnosis tasks [34,35].
Similarly, the complexity of the thermal signal is different under
different sintering conditions, and the sample entropy of the
thermal signal in the RP can be calculated to describe it. For
a series thermal signal XD(i)|ti=1, a set of m-dimension vectors
in sequential order by serial number can be obtained Um(i) =

{XD(i)}|t−m+1
i=1 . The maximum distance between vectors Um(i) and

Um(j) can be defined as d[Um(i),Um(j)] = maxk=1,...,m−1(|XD(i+k)−
XD(j+k)|). For a given Um(i), the number of vectors {Um(j)|1 ≤ j ≤

t − m, j ̸= i} meeting the condition that the maximum distance
between Um(i) and Um(j) is not greater than a given threshold η

can be denoted as Bi. For parameter m, the probability that two
sequences match for m points can be defined as:

Bm(η) =
1

t − m

t−m∑
i=1

Bm
i (η) =

1
t − m

t−m∑
i=1

1
t − m − 1

Bi. (8)

Then the sample entropy can be calculated by:

SED = ln
[

Bm(η)
Bm+1(η)

]
. (9)

The above mentioned four features of each thermal signal in the
RP are fused to form a sintering condition sample, which can be
denoted as {MCFV , . . . ,MST , . . . , SECFV , . . . , SEST }.

3. Kernel modified optimal margin distribution machine for
imbalance classification

In this paper, ODM is selected as a recognition model for
SCR due to its superior generalization performance and classifica-
tion ability. However, ODM was originally designed for balanced
classification tasks and should be improved for class imbalance
tasks.

3.1. Optimal margin distribution machine (ODM)

Generally, a classifier can be denoted as y = ωTϕ(x), which
means that the training data can be separated by a linear classifier
ω after being mapped to a feature space by the mapping function
ϕ. The margin of a sample (xi, yi) can be defined as:

f (xi) = γi = yiωTϕ(xi), ∀i = 1, 2, . . . , n (10)

[29] advocates that by optimizing the margin distribution, the
better generalization performance can be achieved than optimiz-
ing the minimum margin. It formulates the margin mean γ as:

γ =

n∑
i=1

yiωTϕ(xi) =
1
n
(Xy)Tω, (11)

where X = [ϕ(xi), . . . , ϕ(xm)], y = [y1, . . . , ym]
T . After this, by

calculating the difference between the margin of each sample and
the margin mean, the margin variance can be obtained as follows:

γ̂ =
1
n

n∑
i=1

(yiωTϕ(xi) − γ )2 =
1
n
ωTXXTω −

1
n2 ωTXyyTXTω, (12)

Considering the lower computation efficiency of Eqs.
(11) and (12), the margin mean is set to 1 by scaling ∥ω∥

in [29]. Furthermore, by introducing the margin variance in object
function, the ODM can be written as

min
ω,ξi,εi

1
2
ωTω +

1
n

n∑
i=1

(C1ξ
2
i + C2ε

2
i )

s.t. γi ≥ 1 − S − ξi, γi ≤ 1 + S − εi

ξi, εi ≥ 0, i = 1, 2, . . . , n,

(13)

where γi is the margin of sample (xi, yi), which is defined in
Eq. (10), ξi and εi are margin deviation between xi and margin
mean, S determines which samples are support vectors, and C1
and C2 are the trade-off parameters. The second term of Eq. (13) is
an improved representation of the margin variance; if the margin
of (xi, yi) is greater than 1 + S, then ξi = 0 and εi > 0; if the
margin of (xi, yi) is smaller than 1 − S, then ξi > 0, εi = 0.

The original ODM is designed for balanced data and is not
suitable for imbalanced data classification tasks, such as SCR.
According to the contribution of former researchers, the mapping
ability of classifiers can be improved under class imbalance con-
ditions by adjusting the kernel function or kernel matrix. In this
paper, the kernel modification method is introduced to improve
the ODM.

3.2. Kernel modification

For a conventional classifier, the kernel function is used to
map the linear inseparable training data into a high-dimensional
feature space, and it is expected that the training data are linearly
separable in the feature space. Therefore, the selection of the
kernel function directly affects the performance of the classifier.
The kernel functions can also be written as K (xi, yi) = ϕ(xi)ϕ(yi).
The original training data are mapped to a curved Riemannian
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manifold in kernel space [36]. The metric of the Riemannian
manifold can be calculated by:

gij(x) =

(
∂2K (x, x′)

∂xi∂xj

)
x=x′

, (14)

where gij(x) is a coefficient that controls the local volume expan-
sion (LVE) of the adjacent area of sample (x, y) in the Riemannian
manifold. According to Eq. (14), gij(x) is determined by the kernel
function and can be changed indirectly by adjusting kernel ma-
trix. In [36], the conformal transformation is adopted for kernel
modification, which can be written as:

K̃ (x, x′) = D(x)D(x′)K (x, x′), (15)

where D(x) is a positive conformal function and K̃ (x, x′) is the new
kernel derived from Eqs. (14) and (15). The LVE coefficient g̃ij(x)
for K̃ (x, x′) is related to gij(x) by:

g̃ij(x) = D(x)2gij(x) +
∂D(x)
∂xi

K (x, x)
∂D(x)
∂xj

+D(x){
∂K (x, x′)

∂xi
|x′=x

∂D(x)
∂xj

+
∂K (x, x′)

∂xj
|x′=x

∂D(x)
∂xi

}.

(16)

For the selection of D(x), [36] proposed a conformal func-
tion considering the distance between support vectors and other
samples:

D(x) =

∑
k∈SV

exp
(

−
|x − xk|

ητ 2
k

)
, (17)

where SV denotes the set of support vectors and τ 2
k can be

calculated by:

τ 2
k = AVG

i∈{∥ϕ(xi)−ϕ(xk)∥2<M,yi ̸=yk}

(
∥ϕ(xi) − ϕ(xk)∥2) , (18)

where M is the average distance between support vectors and
ϕ(xk). Since the specific form of mapping function ϕ cannot be ob-
tained directly, ∥ϕ(xi)−ϕ(xk)∥ can be calculated by the following
kernel trick:

∥ϕ(xi) − ϕ(xk)∥2
= K (xi, xi) + K (xk, xk) − 2K (xi, xk). (19)

Since the adjacent areas of support vectors are usually the
class boundary near the learned separator, the conformal func-
tion in Eq. (17) reaches its maximum near the class boundary
to amplify the spatial resolution of these areas. However, the
conformal function in [36] is sensitive to the samples near class
boundary, and its computational complexity is relatively high.
Therefore, [28] proposes a conformal function with a simple form:

D(x) = e−kf (x)2 , (20)

where f (x) represents the margin of sample (x, y) defined in
Eq. (10). Therefore, gij(x) can be magnified in the area support
vectors located. It is revealed that the kernel scaling method can
asymmetrically enlarge the space around the class boundary and
increase the separability of linear inseparable training data [28].

3.3. Kernel modified optimal margin distribution machine (KMODM)

The kernel scaling method generally considers the margin of
training data to adjust the kernel of classifier. It ensures that
the boundary samples with smaller margins have a larger gij(x),
thus magnifying the spatial resolution of the class boundary. The
conformal function is the key factor of the kernel scaling method.

The conformal functions in [26–28,36] were proposed for SVM.
Among them, the margin of training samples is considered be-
cause the learned separator of SVM is determined by the support

vector (SV), which is always near the separator. As seen in Fig. 6,
the difference is that the support vectors of ODM are the data
with a larger deviation from the margin mean. Therefore, the
conformal functions defined in Eqs. (17) and (20) are not suitable
for the kernel modification of ODM.

According to Fig. 6(b), the ideal kernel of ODM should be
gathering the training data to hm. In other words, the confor-
mal function D(x) should ensure that the support vectors with
small margins have a large expansion coefficient and that the
support vectors far away from the initial separator have a small
expansion coefficient. At the same time, for imbalanced data, D(x)
should reduce the LVE coefficient of minority samples to make
most of them become support vectors near the separator after
kernel modification. In this way, the learned separator is biased
towards the majority class to minimize the loss, thus alleviating
the separator skewness caused by imbalanced data. In this paper,
a novel conformal function is proposed:

D(x) =

⎧⎨⎩e−Kn·N/(m−f (x)) , f (x) ≤ (1 − S)m
eKf ·N·(m−f (x)) , f (x) ≥ (1 + S)m
e−Kn·N·m , else,

(21)

where S is the sparse parameter of the KMODM. The margin
and margin mean are denoted as f (x) and m, respectively. Kn
and Kf are trade-off parameters to control the volume expansion
coefficients of different areas in the feature space. N reflects the
imbalance ratio (IR) of training samples and can be defined as:

N =

⎧⎪⎨⎪⎩
2 ·

n−

n+
, x ∈ X+

n+

n−
, x ∈ X−,

(22)

where n+ and n− represent the numbers of minority and ma-
jority samples, respectively. As seen from Eq. (21), D(x) is a
monotonously decreasing function of N . When the margins of the
two samples are equal, parameter N defined in Eq. (22) assigns
the minority sample a smaller D(x) to reduce the LVE coefficient.
Thus, the influence of minority samples on the final separator is
enhanced. Furthermore, since the samples in the class boundary
and overlapping region are generally close to the ODM separator,
controlling Kn and Kf in Eq. (21) allows us to magnify the spatial
expansion coefficient of the class boundary and to improve the
mapping ability of the ODM.

Generally, the advantages of D(x) constructed in Eq. (21) are
as follows:

(i) Optimizing parameters Kn and Kf , D(x) can magnify the LVE
coefficient of the area near the initial separator, thus indirectly
increasing the spatial resolution of the class boundary. The data
separability and generalization performance of the classifier can
be improved effectively.

(ii) D(x) can automatically assign a small value to gij(x) of
minority samples considering IR of the training data. In this way,
the impact of these minority samples on the final separator is
increased. The separator skewness and detection accuracy dete-
rioration of the minority class caused by imbalanced data can be
alleviated.

According to Eqs. (15) and (21), the obtained new kernel
matrix can be written as:

K̃ = (k̃ij) = D(xi)D(xj)kij. (23)

where K = (kij) denotes the original kernel matrix. It is easy to
prove that the new kernel matrix derived from Eqs. (21) and (23)
is positive (semi) definite. This means that if the original kernel
matrix of the ODM is valid, the obtained kernel matrix is valid as
well.
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Corollary 1. When the original kernel matrix of the ODM is valid,
the new kernel matrix derived from Eqs. (21) and (23) is a positive
(semi) definite and valid kernel matrix.

Proof. From Eq. (21), it is known that D(x) ≥ 0. F (x) = D(xj)D(xi)
is obviously a symmetric function since D(xi)D(xj) = D(xj)D(xi).
For any training samples x1, x2, . . . , xn ∈ X and α1, α2, . . . , αn ∈

R, the following equation can be established:
n∑

i,j=1

αiαjD(xi)D(xj) =

n∑
i=1

αiD(xi)
n∑

j=1

αjD(xj)

= (
n∑

i=1

αiD(xi))2 ≥ 0.

(24)

Thus, the conclusion that F (x) is a positive (semi) definite func-
tion can be achieved. Denoting d = (d1, d2, . . . , dn)T as an
n-dimensional vector with di = D(xi), the matrix ddT is a positive
(semi) definite matrix. The conformal transformation in Eq. (23)
can be rewritten as a Hadamard product of ddT and K:

K̃ = ddT
∗ K. (25)

Since the original valid kernel matrix K of the ODM is a positive
(semi) definite matrix. According to the Schur product theorem,
the conclusion of K̃ is a positive (semi) definite matrix can also
be drawn, and it is thus a valid kernel matrix (Mercer’ theorem).

Algorithm 1 shows the pseudocodes of the KMODM. By im-
plementing the standard ODM, the margin and margin mean of
training samples can be obtained. The value of conformal function
of each sample can be calculated by Eq. (21) and the original
kernel matrix K can be adjusted. The new kernel matrix K̃ is used
to learn the final separator, resulting in the KMODM classifier.

Because the KMODM is designed mainly for binary classifica-
tion, it cannot be directly used for multi-classification tasks. In
this paper, a directed acyclic graph (DAG) is used to combine
three KMODMmodels into the KMODMDAG for sintering condition
recognition of rotary kilns.

4. Experiments and discussion

To assess the effectiveness of the proposed SCR framework, a
series of experiments on real thermal signals of a rotary kiln are
performed in this section. Furthermore, to verify the applicability
of the proposed KMODM model to other imbalance classification

Fig. 6. The difference of support vectors. Green samples are support vectors of
each classifier, and hm denotes the virtual hyperplane of the margin mean. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. The proposed sintering condition recognition framework.

tasks, part of the experiment on the UCI standard dataset is also
recorded. In this section, the F1 score is adopted to assess the
balance degree of detection rates of different classes and can be
calculated by:

recall =
TP

TP + FN
, pre =

TP
TP + FP

, F1 =
2pre × recall
pre + recall

where TP denotes the true positive, FN represents false negative
and FP refers false positive.

4.1. Experiments on real thermal signals

After determining the sintering condition features and recog-
nition model, the whole SCR framework can be constructed, and
the main module of the framework is shown in Fig. 7. The real
thermal signals are collected from the #3 rotary kiln of the Inner
Mongolia DaTang International Recycling Resource Development
Co., Ltd. in China.
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Fig. 8. The inflection points of the CFV. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

CFV is the coal feeding rate, which is manipulated by oper-
ators. The operators determine the sintering condition and then
adjust the coal feeding to maintain the condition under normal
conditions. For example, the operators would increase CFV when
the rotary kiln is under super-chill conditions. Therefore, the
inflection point of CFV is used to assist in labelling sintering con-
dition samples. Fig. 8 shows the inflection points extracted from
a piece of real CFV data. In Fig. 8, the red triangle points are coal
reduction points, and the corresponding sintering condition can
be preliminarily determined as super-heated. The blue and green
triangles represent super-chilled and normal, respectively. After
obtaining the inflection points of CFV, their labels are confirmed
by two experience kiln operators.

In this way, 4994 samples of different sintering conditions
are extracted, including 569 super-heated samples, 1262 super-
chilled samples, and 3163 normal samples. Seventy percent of
these samples are randomly selected as training data, the rest are
used to compose the test data.

4.1.1. Sintering condition recognition results
To assess the effectiveness of the proposed KMODMDAG model,

a few classifiers designed for bi-class imbalanced data are se-
lected as baseline models, such as the ODM, the weighted kernel-
based synthetic minority oversampling technique (WKSMOTE)
[12], and the large cost-sensitive margin distribution machine
(LCSDM) [18]. Additionally, eight advanced classifiers for multi-
classification are selected and compared with the KMODMDAG.
Among them, multi-class SVM (mcSVM) [37] and the multi-class
ODM (mcODM) [30] are designed for balanced data, multi-class
boosting with costs (BAdaCost) [20] and neural network with
focal loss (FocalNN) [17] are the most advanced imbalanced clas-
sification algorithms based on cost-sensitive methods, the pro-
grams of partially informative boosting (PIBoost) [21], imbalanced
fuzzy-rough ordered weighted average nearest neighbour classi-
fication (FIECOC) [19], diversified one-against-one (DOVO) [38]
and diversified error-correcting output codes (DECOC) [24] can be
found at https://github.com/chongshengzhang/multiimbalance.
For the ODM, the selection of regularization parameters and
sparse parameters are the same as that of the KMODM. λ of
the mcODM and C of mcSVM are both selected by 5-fold cross
validation from [20, 21, . . . , 210

], µ and θ of the mcODM are
selected from [0.1, 0.2...,0.9]. For all methods, the RBF kernel
K (xi, xj) = exp(−δ

xi − xj
2) is adopted, and its width is selected

by 5-fold cross validation from the set [2−10, . . . , 25
].

To prove that the introduction of dynamic features can de-
scribe the different sintering conditions more comprehensively,
the performance of each recognition model is recorded when
using statistical features and fused features. The experiments of
each classifier using different features are repeated 30 times, and

the means and standard deviations of the F1-score are reported
in Table 3. The number in parentheses represents the standard
deviation, and the bolded data are the best results.

Comparing the recognition accuracy of each model for sin-
tering conditions using different features, it can be seen that in
most cases, the introduction of dynamic features can improve the
overall recognition accuracy by more than 2%. This is mainly be-
cause the statistical features cannot fully reflect the information
about the sintering conditions contained in thermal signals, while
the introduction of dynamic features makes the description of
sintering conditions more comprehensive, which can effectively
improve the separability of the sintering condition samples. In
this way, the validity of the extracted dynamic features is proven.

Moreover, from the recognition accuracy of each sintering
condition, it can be seen that, due to the low separability between
super-chilled and normal samples, the mcSVM obtains the lowest
recognition rate of super-chilled condition. By optimizing the
margin distribution of training samples, the mcODM, LCSDM DAG

and the KMODMDAG can obtain more reasonable separators and
improve the detection rate of super-chilled samples. In particular,
the KMODMDAG inherits the strong classification ability of the
ODM and improves the ability to deal with class imbalanced data
by modifying its kernel function. As a result, its super-chilled
detection rate increases by at least 4% over other methods.

It can also be seen in Table 3 that because the influence
of imbalanced data is not considered by mcSVM, mcODM and
ODMDAG, their recognition rates under normal conditions are
much higher than those under abnormal conditions. However,
the KMODM DAG and other classifiers that designed for imbalance
data can significantly improve the detection rate of two abnormal
conditions and obtain a higher overall accuracy. Among them,
FIECOC, DECOC, LCSDM DAG and KMODMDAG both achieve an
overall recognition accuracy of more than 86%, especially the
proposed KMODMDAG, which achieves approximately 90% recog-
nition accuracy. A reasonable explanation for this situation is
that the parameter N, which reflects the imbalance degree, is
embedded in the proposed conformal transformation function.
Using this conformal function to modify the kernel of the ODM,
the expansion coefficient of the region where the minority class
samples are located in the kernel space is compressed, and the
classifier is forced to move towards the majority class region,
thereby optimizing the margin distribution of the minority class
and improving the detection accuracy. Other classifiers that rely
on data preprocessing or cost-sensitive methods fail to optimize
the spatial distribution of samples in kernel space, and the ob-
tained classification hyperplanes are closer to the minority class,
so it is difficult to recognize abnormal conditions in the test
dataset with high accuracy.

4.1.2. Parameter optimization
According to Section 3, Kn and Kf are the key parameters of the

KMODM that control the LVE coefficient of different areas in the
feature space. In this study, the influence of these two parameters
on the performance of the KMODM is analysed. The default value
of sparse parameter S is set as 0.2, and the kernel function is
selected as the RBF. The grid search method is used to find the
optimal parameters in [0, 0.01]. It can be seen in Fig. 9 that for
all three KMODMs in the SCR model, the optimal value of Kf is
generally larger than that of Kn. This causes the area close to the
initial separator to have a large spatial resolution and improves
the separability of training data. This result is consistent with our
analysis in Section 3.

https://github.com/chongshengzhang/multiimbalance
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Table 3
Average recognition accuracy of different classifiers using different features.

Statistical feature Fusion features

Super-heated Super-chilled Normal F1 score Super-heated Super-chilled Normal F1 score

mcSVM 81.64 79.26 91.53 82.07 83.48 81.13 94.02 84.75
(2.2) (2.7) (2.3) (2.5) (2.1) (1.8) (2.6) (2.0)

mcODM 82.62 80.95 91.56 83.78 85.13 83.58 92.88 85.20
(1.9) (2.1) (2.4) (2.2) (1.3) (1.9) (2.0) (1.5)

ODM 82.43 80.18 90.94 82.61 84.81 82.50 92.40 84.31
(2.3) (2.1) (2.5) (2.2) (1.9) (2.4) (2.2) (2.3)

PIBoost 83.45 79.80 89.08 83.50 85.53 82.47 90.51 85.85
(2.7) (2.9) (2.4) (2.5) (2.4) (1.7) (1.9) (2.5)

FIECOC 85.07 81.38 87.82 84.14 86.14 83.58 89.03 86.10
(2.3) (2.6) (1.7) (2.3) (2.3) (2.3) (1.7) (2.0)

DOVO 84.52 81.06 87.80 83.88 86.16 83.70 90.45 85.94
(1.6) (2.5) (2.0) (2.1) (1.7) (2.1) (2.0) (1.9)

DECOC 84.98 81.26 86.48 84.17 86.31 83.14 89.50 86.08
(1.8) (2.1) (1.9) (1.8) (2.0) (2.2) (1.8) (2.1)

WKSMOTE 84.71 81.29 87.13 83.96 85.95 83.21 90.46 85.71
(1.9) (2.3) (2.2) (2.0) (1.7) (1.5) (1.8) (1.7)

BAdaCost 84.13 80.47 87.05 83.94 86.25 83.80 90.88 86.12
(2.3) (2.5) (2.0) (2.3) (1.9) (2.2) (1.6) (2.0)

LCSDM 85.46 80.99 87.68 83.48 87.47 84.42 91.45 87.86
(1.4) (2.2) (1.9) (1.9) (2.0) (1.6) (2.5) (1.8)

FocalNN 86.30 82.06 87.89 85.21 87.91 84.81 91.07 87.94
(2.6) (2.7) (2.3) (2.5) (2.7) (3.1) (2.3) (2.7)

KMODM 86.18 86.07 87.97 86.02 90.26 88.55 92.17 90.59
(2.1) (2.3) (1.7) (2.0) (2.3) (1.8) (2.1) (2.6)

Fig. 9. The optimization of Kn and Kf for the KMODM. (a) Super-chilled vs. super-heated; (b) super-chilled vs. normal; (c) super-heated vs. normal.

4.1.3. Generalization performance analysis
The margin distribution of samples can reflect the generaliza-

tion performance of the SCR framework. The better the margin
distribution is, the better the generalization performance of the
model will be. The margin distribution of each sintering condition
of the KMODMDAG and the mcODM is shown in Fig. 10. The x-axis
in the graph represents the margin of training samples obtained
by the KMODMDAG and the mcODM, and the y-axis represents
the statistical frequency of each margin. The margin distribution
of abnormal conditions obtained by the KMODMDAG is larger
than that of the mcODM. The margin distribution of the normal
condition of the KMODMDAG is similar to that of the mcODM. That
is, the KMODMDAG-based SCR framework can achieve a better
margin distribution and thus will be relatively more accurate for
abnormal condition recognition. This conclusion also confirms the
analysis of the KMODM in Section 4.1.1.

4.1.4. Operational risk reduction
Using different features, the confusion matrix of the

KMODMDAG and the mcODM are shown in Table 4. It can be seen
from the table that the recognition accuracy of three sintering
conditions obtained by the KMODMDAG using fusion features
reaches 90.2%, 88.7% and 91.2%. The super-chilled condition has
the lowest recognition accuracy due to the low feature separa-
bility between its samples and the normal samples. In this case,

Fig. 10. The margin distribution of each sintering condition obtained by the
ODMDAG and KMODMDAG .
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the recognition accuracy of the super-chilled condition obtained
by the KMODMDAG is still higher than that of the mcODM. Ad-
ditionally, the super-heated method achieves a relatively high
recognition accuracy. This proves that the KMODMDAG is effective
in eliminating the influence of imbalanced data and improving
the detection rate of the minority class. The accuracies of the
mcODM merely using statistical features are 82.4%, 80.2% and
92.2%, which are significantly lower than that of the KMODMDAG

considering dynamic features of thermal signals
Furthermore, since the operations corresponding to the two

abnormal sintering conditions are quite different, the lower mis-
judgement rate between two abnormal conditions is essential
for operational risk reduction. From the confusion matrix in Ta-
ble 4, it can be seen that, using fusion features, the KMODMDAG

achieves a misjudgement rate of 3.2% between two abnormal sin-
tering conditions, which is approximately one-third of that of the
mcODM (10.7%). In fact, it can be seen from Table 4 that even if
the same recognition model is adopted, considering the dynamic
features of thermal signals can achieve a lower misjudgement
rate between two abnormal conditions. That is, by introducing
dynamic features of thermal signals and modifying the kernel of
the ODM, the proposed the KMODMDAG-based sintering condition
recognition framework can significantly improve the recogni-
tion rate of abnormal conditions and reduce the operational risk
deduced by abnormal sintering condition misclassification.

4.1.5. CPU time cost
In many studies of control algorithms and systems, the CPU

time cost is usually used to evaluate the computational effi-
ciency of the algorithm and its application feasibility in industrial
fields [39,40]. To further analyse the computation efficiency of the
proposed the KMODMDAG model, the average CPU time consumed
by the training and testing phases of the above models is shown
in Fig. 11. All experiments are performed with MATLAB 2014a on
the workstation with 2 × 3.3 GHz CPUs and 4 GB main memory.

Compared with PIBoost and FIECOC, the KMODMDAG has a
significant advantage in training time. Because the DOVO method
finds the optimal classifier for each subset, it requires consider-
able training time. The DECOC method uses ECOC to replace the
class decomposition method in DOVO. It trains more classifiers
than the DOVO method. Thus, it takes the longest training time.
BAdaCost combines the ensemble framework and cost-sensitive
method, and its training process also requires considerable CPU
time. The core of focalNN is the cost-sensitive idea, and it as-
signs greater misclassification penalties to the samples that are
difficult to classify. The algorithm iterations of focalNN make it
not advantageous in terms of training time. Since KMODM also
needs iterative calculation to obtain the initial margin of the
samples, its calculation efficiency is lower than that of methods
such as mcSVM, mcODM and the ODMDAG that learn the classifier
only once. However, benefits to the parallel learning of multiple
KMODMmodel in the DAG framework, compared with other clas-
sifiers for multi-class imbalanced data, especially PIBoost, DOVO
and DECOC, KMODMDAG shows a significantly low CPU time cost.
Considering the advantages of the KMODM in abnormal condition
recognition, the slight loss of computation efficiency is accept-
able. Because the sintering condition of a rotary kiln generally
changes slowly, these results show that KMODMDAG is suitable
for real-time SCR tasks of a rotary kiln.

4.2. Experiments on standard datasets

To further verify the ability of the KMODM to handle imbal-
anced data, in this section, the proposed the KMODM is compared
with several baseline methods on two-dimensional visualization
data and some standard datasets.

Fig. 11. CPU time cost of each recognition model.

Fig. 12. Imbalanced data and visualized separators of the KMODM and the ODM
(IR = 10).

4.2.1. Experiments on visualization data
Fig. 12 shows a comparison of the separators learned by the

KMODM and the ODM to illustrate the effectiveness of the pro-
posed model. In this figure, the separator of ODM seriously skews
towards the minority class. However, the proposed the KMODM
adopts the kernel scaling method and thus can alleviate the skew-
ness of the classifier. As a result, both the margin distribution and
the detection rate of the minority class are optimized.

4.2.2. Experiments on UCI datasets
In this part, five multi-class standard UCI datasets are selected

to assess the performance of the KMODM. The experimental
results are shown in Table 5. It can be seen that the results of the
mcSVM, mcODM and ODMDAG are unsatisfactory on most multi-
class imbalanced data. Other classifiers designed for imbalanced
data can achieve more balanced detection rates and better F1
scores. The proposed KMODMDAG algorithm achieves the best re-
sults on most datasets. Analysing the performance of the KMODM
on 2-D visualization data and UCI standard datasets, the conclu-
sion that the proposed the KMODM model can effectively deal
with imbalanced data classification tasks can be drawn.

5. Conclusion and prospects

Recognition of sintering conditions is a key prerequisite for
effective control of rotary kilns. This paper presented a thermal
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Table 4
Confusion matrix of the KMODMDAG and the mcODM using different features. The data in the confusion matrix are
the average of 30 experimental results.

Table 5
Means and standard deviations of F1 score with RBF kernel on multi-class
datasets.
Dataset Hayes Newthy Balance Car Thyroid

mcSVM 78.3 ± 2.0 91.5 ± 2.8 65.7 ± 2.5 95.2 ± 2.8 63.1 ± 2.3
mcODM 81.2 ± 1.9 92.3 ± 2.5 67.4 ± 1.9 96.0 ± 2.3 65.4 ± 2.2
ODM 78.7 ± 2.4 90.6 ± 2.9 66.7 ± 1.8 95.0 ± 1.5 63.5 ± 1.6
PIBoost 78.4 ± 2.0 93.3 ± 2.2 68.4 ± 1.9 96.3 ± 2.4 68.6 ± 2.8
FIECOC 78.1 ± 2.3 92.5 ± 3.1 68.8 ± 2.1 97.2 ± 1.7 68.4 ± 2.0
DOVO 80.5 ± 1.7 93.7 ± 2.6 67.4 ± 1.7 97.9 ± 1.3 69.5 ± 1.4
DECOC 81.7 ± 2.1 94.3 ± 3.0 70.6 ± 2.3 98.4 ± 2.7 70.5 ± 2.0
WKSMOTE 80.2 ± 2.6 92.6 ± 3.5 68.2 ± 3.0 97.1 ± 2.2 67.7 ± 2.5
BAdaCost 82.1 ± 2.3 94.6 ± 1.8 72.0 ± 2.1 97.7 ± 2.3 69.8 ± 2.6
LCSDM 83.5 ± 1.9 95.1 ± 1.8 69.0 ± 2.4 97.0 ± 1.4 68.9 ± 1.9
FocalNN 82.7 ± 1.5 95.4 ± 2.0 69.5 ± 2.7 98.9 ± 1.9 69.3 ± 2.0
KMODM 85.9 ± 2.0 97.9 ± 2.1 69.7 ± 1.8 99.1 ± 1.2 72.9 ± 6.3

signal-based framework considering class imbalance to recognize
sintering conditions in kilns. For the separability improvement
of sintering samples, this novel framework extracts the dynamic
features of thermal signals and combines them with conventional
statistical features to describe different sintering conditions. Aim-
ing to address the class imbalance issue of sintering samples, the
proposed framework introduces the kernel modification method
to improve the selected recognition model. More specifically,
a novel imbalance classification model named the KMODM is
proposed by constructing a new conformal function to modify
the kernel function of the ODM. This is the first time that the
class imbalance issue has been considered in sintering condition
recognition tasks of rotary kilns. The experimental results on
real thermal signals show that the proposed SCR framework can
achieve a more balanced detection rate and reduce the mis-
judgement risk of abnormal conditions. Using our framework,
the recognition accuracy of the sintering condition can reach
approximately 90%, and the balance and low-risk recognition of
the sintering condition have been realized as well.

The proposed SCR method merely relies on the statistical and
dynamic features of thermal signals, and it will be worthwhile
in the future to introduce other information, such as the fea-
tures of the flame image and other hidden features extracted
by some deep neural networks. Additionally, improving mcODM
for multi-class imbalance classification tasks and designing the
subsequent control system according to the obtained sintering
state recognition results will also be our directions for future
research.
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